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Summary: Chiral auxiliary-modified ketene acetal 5g and 
N-benzoylbenzaldimine (4) engage in an endo and r-fa- 
cially selective thermal inverse electron demand hetero- 
Diels-Alder reaction that is the key step in a synthesis of 
enantiomerically pure taxol A-ring side-chain methyl ester 
9. 

The evolution of taxol' into a highly significant anti- 
tumor drug2 and its current scarcity3 have focused 
attention on the synthesis4 and attachment4B*S to naturally 
derived taxanes like baccatin IIIs of the taxol A-ring side 
chain (l), without which (Le., as in baccatin 111) important 
biological activity is not expressed.' In a recent report on 
partial syntheses of selected taxol analogs,' we speculated 
that dihydroketooxazineslike 2 might be effective acylating 
agents toward the hindered and poorly reactive baccatin 
I11 (2-13 hydroxyl, thereby leading to efficient partial 
syntheses of taxol and analogs. That concept has been 
demonstrated by Holton." Insofar as dihydrooxazines 
like 3 can arise from inverse electron demand hetero-Diels- 
Alder reactions? they suggested, as well, the new assembly 
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of the taxol A-ring side chain depicted below. Herein we 
report that the taxol A-ring side chain may be constructed 
enantioselectively through a thermal, chiral auxiliary- 
mediated variant of this cycloaddition.9 
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The enantioselective construction of the taxol A-ring 
side chain through intermediates of type 3 requires (1) 
that the cycloaddition delivering them proceed through 
an endo transition structurelo and (2) that the chiral 
auxiliary causes the ketene acetal to experience an 
acceptable degree of r-facial discrimination. The 
literaturellprovided little guidance regarding the transition 
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structure to be expected. However, the interaction of S2 
ketene acetal Sa with N-benzoylbenzaldimine (4)13 fol- 
lowed by aqueous acid workup14 furnished a 5060 mixture 
of racemic syn methyl ester 6a/7a and racemic anti methyl 
ester 8a, respectively, whereas a similar experiment with 
2 ketene cyclohexyl acetal 5b led to a 7921 mixture of 
racemic 6b/7b and racemic 8b, respectively (Scheme I). 
The syn/anti diastereomer ratios were evaluated by GC- 
MS; confirmation of the structural assignments was made 
by comparison to authentic materials4 through 'H NMR 
spectroscopy. These observations indicate that no intrinsic 
electronic bias is operative toward either the endo or ex0 
cycloaddition transition structures, but the steric influence 
of the cyclohexyl group can impart a modest preference 
for the endo transition structure responsible for the 
formation of 3 and, thus, the s y n  taxol A-ring side-chain 
diastereomer to which it leads.lS 

(12) For chelation control of 2 enolate formation from a-alkoxy eatera, 
nee, for exnmple: Heathcock, C. H.; Pirmng, M. C.; Young, S. D.; Hagen, 
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1984,688. 
(14) Cycloaddition-hydrolyaddition-hydrolyeir p d u r e  (Scheme I): 2 mmolof ketene 

acetal 6 (100% 2) and 2.4 mmol of N-benzoylbenzaldimine 4 in 8 mL of 
benzene were stirred at the indicated temperature for 2-14 h. Workup 
with dilute aqueoue HC1 gave 6-8. 

Since most chiral auxiliaries would be expected to exert 
a steric effect greater than cyclohexyl, we turned next to 
an examination of chiral auxiliary-mediated ketene acetal 
r-facial discrimination. 2 Ketene acetals 5c-g were 
prepared from the corresponding (benzy1oxy)acetate esters 
by treatment with LHMDS and TMSCl in THF in the 
case of Sc-e, whereas Sf,g were prepared from the same 
ester-silylating agent-solvent combination and lithium 
cyclohexylisopropylamide. N-Benzoylbenzaldimine (4) 
and the chiral auxiliary-modified ketene acetab were then 
combined" to give, after aqueous acid workup of the 
cycloaddition reaction mixtures, syn and anti diastereo- 
mers 6-8 (combined yield indicated). For the removal of 
the chiral auxiliaries and the determination of the levels 
of asymmetric induction, the mixtures of 6-8 were 
sequentially debenzylated (68% -quantitative) and trans- 
esterified (56-82 % ) to afford taxol A-ring side chain methyl 

(16) We cannot unequivocally eliminate open transition structure i 
below. H o w e v e r , w e r e g a r d t h e d e ~ d ~ ~ o f t h e a y P a n t I s ~ ~ ~ ~  
on the steric requirement of the Aru substituent an inconsistent with thm 
transition structure. 
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The transition structures involved in the present cy- 
cloadditions are not subject to organization by Lewis acid 
ligation and might be expected to reflect the ground-state 
conformational biases of the ketene acetals. A model for 
ground-state 5g that accounts for its r-facial selectivity 
and is supported by a conformational search for the related 
dimethoxy structure23 (Me0 instead of TMSO and 
PhCH20) is indicated below (A). This conformation lies 

ester enantiomers 9 and 10 and the analogous anti methyl 
ester diastereomer 11. The 9:lO enantiomer ratios were 
evaluated by lH NMR spectroscopy using Eu(hfc)a. The 
natural 2’R,3’S enantiomer of the taxol A-ring side-chain 
methyl ester (9) produced in entry 7 in Scheme I exhibited 
[a12% = -49.7O (c = 0.458; MeOH) [lit.’ [a]2% = -49.6’ 
(MeOH)]. 

As expected, the chiral auxiliaries employed in Scheme 
I led to better levels of endo-exo discrimination than did 
cyclohexyl. However, the best in this regard-(-)-isopino- 
camphey116 (5c)-enforced disappointing *-facial dis- 
crimination, as did (-)-trans-2-phenyl-l-cyclohexy117Js 
(5d) and (-)-menthy117 (50). (-)-&Phenylmenthyl17Jg (50 
led to the taxol A-ring side-chain methyl ester in excellent 
enantiomeric purity, but, as with the remaining two 
terpene-related auxiliaries, in the unnatural 2’S,3’R enan- 
tiomeric form. Notably, the (-)-trans-2-phenyl-l-cyclo- 
hexyl auxiliary, related in ita absolute stereochemistry to 
(-)&phenylmenthyl, led mainly to natural 2’R,3’S taxol 
A-ring side-chain methyl ester enantiomer 9. Examples 
of the reversal of the sense of asymmetric induction caused 
by tram-2-phenyl-1-cyclohexylversus the spatially related 
enantiomer of 8-phenylmenthyl have been reported by 
Whitesell.20 CominsZ1 recently developed convenient 
preparations of both enantiomeric forms of the 8-phen- 
ylmenthyl surrogate-tram-2-( 1-methyl-1-phenylethy1)- 
1-cyclohexyl.22 The (lS,2R)-(+)-trans- 24 l-methyl-l- 
phenylethy1)-1-cyclohexyl auxiliary related to the enantio- 
meric form of (lR,2S,5R)-(-)-8-phenylmenthyl was in- 
corporated into ketene acetal 5g and, as expected from 
the experience with Sf, delivered 9 through a cycloaddition 
characterized by good endo and excellent *-facial selec- 
tivity. 
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so 
approximately 1.8 kcal-mol-’lower in energy than the next 
type encountered (B), for which reduced %-facial dis- 
crimination would be expected. The origin of the s-facial 
selectivities observed for 5f and Sg aside, this report 
suggests that high levels of chiral auxiliary-mediated 
asymmetric induction might be generally attainable in 
thermal inverse electron demand hetero-Diels-Alder re- 
actions. 
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